This math topic focuses on determining the sector angle of a circle given the sector's area and the circle's radius. It is nested within a broader unit on circle geometry, specifically covering areas of circle sectors and related aspects. Through a series of questions, learners are tasked with calculating the angle of a circle sector based on provided areas and radius values, applying the formula \( \theta = \frac{{360 \times (sector\ area)}}{{\pi \times radius^2}} \). Each question presents multiple-choice answers, encouraging hands-on problem-solving within the theme of circle geometry.
Work on practice problems directly here, or download the printable pdf worksheet to practice offline.
Complete these online problems with 80% or 4 correct answers in a row. Results are immediate.
Find the sector angle for a sector with area 24 π in a circle of radius 6
Math worksheet on 'Area of a Circle Sector From Area to Angle (Equation) (Level 3)'. Part of a broader unit on 'Geometry - Circle Area, Sectors and Donuts - Intro' Learn online: app.mobius.academy/math/units/geometry_circles_sector_donut_area_logic_intro/ |
Find the sector angle for a sector with area 125/6 π in a circle of radius 5 |
450º |
1,350º |
900º |
300º |
1,500º |
1,050º |
Find the sector angle for a sector with area 14 π in a circle of radius 4 |
305º |
315º |
935º |
5º |
1,400º |
615º |
Find the sector angle for a sector with area 6 π in a circle of radius 3 |
480º |
360º |
840º |
600º |
240º |
960º |
Find the sector angle for a sector with area 3/2 π in a circle of radius 3 |
240º |
30º |
60º |
90º |
300º |
120º |
Find the sector angle for a sector with area 25/3 π in a circle of radius 5 |
360º |
540º |
300º |
480º |
120º |
240º |
Find the sector angle for a sector with area 125/8 π in a circle of radius 5 |
875º |
105º |
655º |
225º |
335º |
5º |
Find the sector angle for a sector with area 9/2 π in a circle of radius 6 |
155º |
115º |
95º |
85º |
45º |
145º |