This math topic focuses on determining the function domains where functions involve the ratio of the square root of a linear expression to the square root of a quadratic expression with real roots. Students are asked to identify the correct set that describes the domain of such functions in multiple-choice format. This topic aims to strengthen skills in analyzing the behavior of function denominators, particularly concerning the conditions that allow for real and defined outputs, such as ensuring non-negative values under the square roots and non-zero quadratic expressions. This is foundational in understanding function behavior in higher mathematics, particularly in algebra and calculus.

Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

more
View

Function Domain - Fraction Root of Linear over Root of Quadratic (Real Roots) to Domain Definition Worksheet

Mobius Math Academy logo
Function Domain - Fraction Root of Linear over Root of Quadratic (Real Roots) to Domain Definition
1
A LaTex expression showing f(x) = \frac{square root of 1x+1}{square root of 3x to the power of 2 +9x-0}
What set describes the domain of this function?
a A LaTex expression showing \{X \in \mathbb{{R}} \vert 0 < X\}
b A LaTex expression showing \{X \in \mathbb{{R}} \vert 0 \le X\}
2
What set describes the domain of this function?
A LaTex expression showing f(x) = \frac{square root of -1x-1}{square root of 1x to the power of 2 -9x+8}
a A LaTex expression showing \{X \in \mathbb{{R}} \vert -1 \le X \le 2\}
b A LaTex expression showing \{X \in \mathbb{{R}} \vert X \le -1\}
3
What set describes the domain of this function?
A LaTex expression showing f(x) = \frac{square root of 1x+2}{square root of 1x to the power of 2 +6x-0}
a A LaTex expression showing \{X \in \mathbb{{R}} \vert -6 \le X < 0\}
b A LaTex expression showing \{X \in \mathbb{{R}} \vert 0 < X\}
4
What set describes the domain of this function?
A LaTex expression showing f(x) = \frac{square root of 1x+2}{square root of -1x to the power of 2 -6x-0}
a A LaTex expression showing \{X \in \mathbb{{R}} \vert -2 \le X < 0\}
b A LaTex expression showing \{X \in \mathbb{{R}} \vert -2 \le X \le 0\}
5
What set describes the domain of this function?
A LaTex expression showing f(x) = \frac{square root of -1x-4}{square root of 1x to the power of 2 +2x-24}
a A LaTex expression showing \{X \in \mathbb{{R}} \vert X < -6\}
b A LaTex expression showing \{X \in \mathbb{{R}} \vert -6 < X\}
6
What set describes the domain of this function?
A LaTex expression showing f(x) = \frac{square root of 1x+1}{square root of -1x to the power of 2 +6x+16}
a A LaTex expression showing \{X \in \mathbb{{R}} \vert -1 \le X \le 8\}
b A LaTex expression showing \{X \in \mathbb{{R}} \vert -1 \le X < 8\}
7
A LaTex expression showing f(x) = \frac{square root of 1x-5}{square root of 1x to the power of 2 +2x-0}
What set describes the domain of this function?
a A LaTex expression showing \{X \in \mathbb{{R}} \vert 5 \le X\}
b A LaTex expression showing \{X \in \mathbb{{R}} \vert X \le 5\}
8
What set describes the domain of this function?
A LaTex expression showing f(x) = \frac{square root of -1x-0}{square root of 5x to the power of 2 +5x-10}
a A LaTex expression showing \{X \in \mathbb{{R}} \vert -2 < X\}
b A LaTex expression showing \{X \in \mathbb{{R}} \vert X < -2\}