The topics in this unit focus on understanding the end behaviour of a polynomial function from graphs and equations. Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

View

Function End Behaviour (Polynomials) - Behaviour to Rule Worksheet

Mobius Math Academy logo
Function End Behaviour (Polynomials) - Behaviour to Rule
1
A LaTex expression showing \text{as }x \rightarrow -\infty , y \rightarrow -\infty \\ \text{as }x \rightarrow \infty , y \rightarrow -\infty \\
What does this end behaviour tell us about a function's highest power and leading coefficient?
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{negative}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{negative}\end{align*}
2
A LaTex expression showing \text{as }x \rightarrow -\infty , y \rightarrow -\infty \\ \text{as }x \rightarrow \infty , y \rightarrow \infty \\
What does this end behaviour tell us about a function's highest power and leading coefficient?
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{positive}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{positive}\end{align*}
3
A LaTex expression showing \text{as }x \rightarrow -\infty , y \rightarrow \infty \\ \text{as }x \rightarrow \infty , y \rightarrow -\infty \\
What does this end behaviour tell us about a function's highest power and leading coefficient?
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{negative}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{positive}\end{align*}
4
A LaTex expression showing \text{as }x \rightarrow -\infty , y \rightarrow \infty \\ \text{as }x \rightarrow \infty , y \rightarrow \infty \\
What does this end behaviour tell us about a function's highest power and leading coefficient?
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{positive}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{positive}\end{align*}