The topics in this unit focus on understanding the end behaviour of a polynomial function from graphs and equations. Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

View

Function End Behaviour (Polynomials) - Function to Rule Worksheet

Mobius Math Academy logo
Function End Behaviour (Polynomials) - Function to Rule
1
What end behaviour criteria is correct for this function?
A LaTex expression showing f(x) = 2x to the power of 3 -5x to the power of 2 -5x
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{negative}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{positive}\end{align*}
2
What end behaviour criteria is correct for this function?
A LaTex expression showing f(x) = 3x to the power of 2 -5x-5
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{positive}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{positive}\end{align*}
3
What end behaviour criteria is correct for this function?
A LaTex expression showing f(x) = -2x to the power of 2 +4x+4
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{negative}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{positive}\end{align*}
4
What end behaviour criteria is correct for this function?
A LaTex expression showing f(x) = 3x to the power of 2 -2x-2
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{positive}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{positive}\end{align*}
5
What end behaviour criteria is correct for this function?
A LaTex expression showing f(x) = 5x to the power of 6 -3x to the power of 5 -3x to the power of 4
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{negative}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{positive}\end{align*}
6
A LaTex expression showing f(x) = 3x+5
What end behaviour criteria is correct for this function?
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{positive}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{positive}\end{align*}
7
A LaTex expression showing f(x) = -2x-2
What end behaviour criteria is correct for this function?
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{positive}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{negative}\end{align*}
8
What end behaviour criteria is correct for this function?
A LaTex expression showing f(x) = 2x to the power of 2 +4x+4
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{negative}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{positive}\end{align*}