The topics in this unit focus on understanding the end behaviour of a polynomial function from graphs and equations. Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

View

Function End Behaviour (Polynomials) - Power and Coefficient to Rule Worksheet

Mobius Math Academy logo
Function End Behaviour (Polynomials) - Power and Coefficient to Rule
1
A LaTex expression showing \begin{align*}\text{highest power} &= 3\\ \text{leading coefficient} &= -2\end{align*}
How would this highest power and leading coefficient be described when analyzing end behaviour?
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{positive}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{negative}\end{align*}
2
A LaTex expression showing \begin{align*}\text{highest power} &= 5\\ \text{leading coefficient} &= 5\end{align*}
How would this highest power and leading coefficient be described when analyzing end behaviour?
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{positive}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{positive}\end{align*}
3
A LaTex expression showing \begin{align*}\text{highest power} &= 1\\ \text{leading coefficient} &= -3\end{align*}
How would this highest power and leading coefficient be described when analyzing end behaviour?
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{negative}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{negative}\end{align*}
4
A LaTex expression showing \begin{align*}\text{highest power} &= 3\\ \text{leading coefficient} &= 3\end{align*}
How would this highest power and leading coefficient be described when analyzing end behaviour?
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{negative}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{positive}\end{align*}
5
A LaTex expression showing \begin{align*}\text{highest power} &= 7\\ \text{leading coefficient} &= 5\end{align*}
How would this highest power and leading coefficient be described when analyzing end behaviour?
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{positive}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{negative}\end{align*}
6
A LaTex expression showing \begin{align*}\text{highest power} &= 4\\ \text{leading coefficient} &= -5\end{align*}
How would this highest power and leading coefficient be described when analyzing end behaviour?
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{positive}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{negative}\end{align*}
7
A LaTex expression showing \begin{align*}\text{highest power} &= 3\\ \text{leading coefficient} &= 5\end{align*}
How would this highest power and leading coefficient be described when analyzing end behaviour?
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{positive}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{positive}\end{align*}
8
A LaTex expression showing \begin{align*}\text{highest power} &= 4\\ \text{leading coefficient} &= -2\end{align*}
How would this highest power and leading coefficient be described when analyzing end behaviour?
a A LaTex expression showing \begin{align*}\text{highest power} &= \text{even}\\ \text{leading coefficient} &= \text{negative}\end{align*}
b A LaTex expression showing \begin{align*}\text{highest power} &= \text{odd}\\ \text{leading coefficient} &= \text{negative}\end{align*}