This math topic focuses on determining the domain of functions that are expressed as a ratio of linear polynomials (fraction linear over linear). The problems involve analyzing the denominator of the function to identify values that would make it zero, as the function is undefined at these points. Each question presents a function, and multiple-choice answers detail different sets describing the possible domain excluding values that make the denominator zero. The broader theme is solving practices related to functions, specifically their domain and range.

Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

more
View

Function Domain - Fraction Linear over Linear to Domain Definition Worksheet

Mobius Math Academy logo
Math worksheet on 'Function Domain - Fraction Linear over Linear to Domain Definition (Level 1)'. Part of a broader unit on 'Functions - Domain and Range Solving - Practice' Learn online: app.mobius.academy/math/units/functions_domain_range_solving_practice/
1
What set describes the domain of this function?
A LaTex expression showing f(x) = -1x+3 over -1x+3
a A LaTex expression showing \{X \in \mathbb{{R}} \vert -3 < X < 3\text{{ or }}-3 \le X \le 3\}
b A LaTex expression showing \{X \in \mathbb{{R}} \vert X < 3\text{{ or }}3 < X\}
2
What set describes the domain of this function?
A LaTex expression showing f(x) = 1x-1 over -1x+4
a A LaTex expression showing \{X \in \mathbb{{R}} \vert X < 4\text{{ or }}-4 < X < 4\}
b A LaTex expression showing \{X \in \mathbb{{R}} \vert X < 4\text{{ or }}4 < X\}
3
What set describes the domain of this function?
A LaTex expression showing f(x) = 1x+4 over 1x-4
a A LaTex expression showing \{X \in \mathbb{{R}} \vert X < 4\text{{ or }}4 < X\}
b A LaTex expression showing \{X \in \mathbb{{R}} \vert -4 < X < 4\text{{ or }}-4 < X < 4\}
4
What set describes the domain of this function?
A LaTex expression showing f(x) = -1x+2 over 1x+1
a A LaTex expression showing \{X \in \mathbb{{R}} \vert X < -1\text{{ or }}-1 < X\}
b A LaTex expression showing \{X \in \mathbb{{R}} \vert -1 < X < 1\text{{ or }}-1 < X\}
5
What set describes the domain of this function?
A LaTex expression showing f(x) = 1x-1 over -1x-3
a A LaTex expression showing \{X \in \mathbb{{R}} \vert X < -3\text{{ or }}-3 < X\}
b A LaTex expression showing \{X \in \mathbb{{R}} \vert -3 < X < 3\text{{ or }}-3 < X\}
6
What set describes the domain of this function?
A LaTex expression showing f(x) = 1x+1 over 1x-2
a A LaTex expression showing \{X \in \mathbb{{R}} \vert -2 < X < 2\text{{ or }}-2 < X < 2\}
b A LaTex expression showing \{X \in \mathbb{{R}} \vert X < 2\text{{ or }}2 < X\}
7
What set describes the domain of this function?
A LaTex expression showing f(x) = -1x-4 over -1x+5
a A LaTex expression showing \{X \in \mathbb{{R}} \vert -5 < X < 5\text{{ or }}5 \le X\}
b A LaTex expression showing \{X \in \mathbb{{R}} \vert X < 5\text{{ or }}5 < X\}