Add with One Scalar (Level 1)

This math topic focuses on operations involving the addition of matrices with scalars. Students are expected to calculate the resulting matrices after scalar multiplication followed by matrix addition. Each problem involves: 1. Determining a new matrix after multiplying one matrix by a scalar then adding another matrix. 2. Selection from multiple-choice answers, each showing different possible resulting matrices. These types of problems help students understand and apply properties of matrix operations and scalar multiplication, which are fundamental in linear algebra.

Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

more
View

Add with One Scalar

Complete these online problems with 80% or 4 correct answers in a row. Results are immediate.


Find the resulting matrix for P + yR when y = 3

P=[50]    R=[48]P = \left[ {\begin{array} {cc} 5 \\ 0 \end{array} } \right] \;\; R = \left[ {\begin{array} {cc} 4 \\ 8 \end{array} } \right]

?

Matrices - Add with One Scalar Worksheet

Mobius Math Club logo
Math worksheet on 'Matrices - Add with One Scalar (Level 1)'. Part of a broader unit on 'Matrices' Learn online: app.mobius.academy/math/units/matrices/
1
Find the resulting matrix for pY + X when p = 2
A LaTex expression showing Y = \left[ {\begin{array} {} \end{array} } \right]\\X = \left[ {\begin{array} {} \end{array} } \right]
a A LaTex expression showing undefined
b A LaTex expression showing \left[ {\begin{array} {} \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 2 & 2 \\ 1 & 1 \end{array} } \right]
2
Find the resulting matrix for zY + C when z = 4
A LaTex expression showing Y = \left[ {\begin{array} {cc} 2 & 3 & 7 \\ 7 & 4 & 0 \end{array} } \right]\\C = \left[ {\begin{array} {cc} 6 & 2 & 9 \\ 1 & 8 & 1 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 14 & 14 & 37 \\ 29 & 24 & 1 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} 8 & 12 & 28 & 6 & 2 & 9 \\ 28 & 16 & 0 & 1 & 8 & 1 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 4 & 4 \\ 1 & 1 \end{array} } \right]
d A LaTex expression showing undefined
3
Find the resulting matrix for pD + C when p = 3
A LaTex expression showing D = \left[ {\begin{array} {ccc} 3 & 0 & 3 \\ 8 & 8 & 1 \\ 4 & 5 & 5 \end{array} } \right]\\C = \left[ {\begin{array} {ccc} 7 & 9 & 6 \\ 5 & 9 & 8 \\ 8 & 1 & 1 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 16 & 8 & 15 \\ 29 & 33 & 11 \\ 20 & 16 & 16 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 7 & 5 & 7 \\ 6 & 8 & 5 \\ 3 & 3 & 1 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cccccc} 9 & 0 & 9 \\ 24 & 24 & 3 \\ 12 & 15 & 15 \\ 7 & 9 & 6 \\ 5 & 9 & 8 \\ 8 & 1 & 1 \end{array} } \right]
d A LaTex expression showing undefined
e A LaTex expression showing \left[ {\begin{array} {ccc} 16 & 9 & 15 \\ 29 & 33 & 11 \\ 20 & 16 & 16 \end{array} } \right]
4
Find the resulting matrix for B + dN when d = 3
A LaTex expression showing B = \left[ {\begin{array} {ccc} 1 \\ 5 \\ 1 \end{array} } \right] \;\; N = \left[ {\begin{array} {ccc} 8 \\ 3 \\ 7 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 1 \\ 1 \\ 2 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 25 \\ 14 \\ 22 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 1 & 1 \\ 3 & 3 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} 6 \\ 2 \\ 4 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 25 \\ 12 \\ 25 \end{array} } \right]
5
Find the resulting matrix for xZ + B when x = 3
A LaTex expression showing Z = \left[ {\begin{array} {ccc} 5 \\ 8 \\ 2 \end{array} } \right] \;\; B = \left[ {\begin{array} {ccc} 2 \\ 9 \\ 2 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 7 \\ 3 \\ 1 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 17 \\ 33 \\ 8 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} 17 \\ 33 \\ 10 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} 2 \\ 4 \\ 0 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 7 \\ 1 \\ 0 \end{array} } \right]
6
Find the resulting matrix for rN + M when r = 2
A LaTex expression showing N = \left[ {\begin{array} {cc} 0 & 7 \\ 3 & 4 \end{array} } \right]\\M = \left[ {\begin{array} {cc} 4 & 2 \\ 9 & 6 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 2 & 2 \\ 1 & 1 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} 6 & 3 \\ 9 & 7 \end{array} } \right]
c A LaTex expression showing undefined
d A LaTex expression showing \left[ {\begin{array} {cc} 9 & 0 \\ 9 & 0 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 4 & 16 \\ 15 & 14 \end{array} } \right]
7
Find the resulting matrix for C + xP when x = 3
A LaTex expression showing C = \left[ {\begin{array} {c} 4 & 1 & 7 \end{array} } \right]\\P = \left[ {\begin{array} {c} 9 & 6 & 5 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {c} 0 & 3 & 3 \end{array} } \right]
b A LaTex expression showing undefined
c A LaTex expression showing \left[ {\begin{array} {c} 31 & 19 & 22 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {c} 2 & 4 & 5 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 1 & 1 \\ 3 & 3 \end{array} } \right]