Add with Two Scalars (Level 1)

This math topic focuses on operations with matrices, emphasizing the addition of two matrices after each has been multiplied by a scalar. It provides practice on calculating the resultant matrix from such operations, with various problems structured to apply specific integer scalar values to two matrices and summing the results. Additionally, it includes multiple-choice answers, allowing for practice in selecting the correct resultant matrix from a list of possibilities while reinforcing understanding of matrix addition and scalar multiplication.

Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

more
View

Add with Two Scalars

Complete these online problems with 80% or 4 correct answers in a row. Results are immediate.


Find the resulting matrix for nR + xZ when n = 4 and x = 2

R=[4690]Z=[3476]R = \left[ {\begin{array} {cc} 4 & 6 \\ 9 & 0 \end{array} } \right]\\Z = \left[ {\begin{array} {cc} 3 & 4 \\ 7 & 6 \end{array} } \right]

?

Matrices - Add with Two Scalars Worksheet

Mobius Math Club logo
Math worksheet on 'Matrices - Add with Two Scalars (Level 1)'. Part of a broader unit on 'Matrices' Learn online: app.mobius.academy/math/units/matrices/
1
Find the resulting matrix for bZ + yX when b = 3 and y = 2
A LaTex expression showing Z = \left[ {\begin{array} {cc} 8 & 0 & 4 \\ 7 & 4 & 0 \end{array} } \right]\\X = \left[ {\begin{array} {cc} 0 & 7 & 5 \\ 6 & 3 & 5 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cccc} 24 & 0 & 12 \\ 21 & 12 & 0 \\ 0 & 14 & 10 \\ 12 & 6 & 10 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} 27 & 14 & 23 \\ 33 & 16 & 10 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 24 & 14 & 22 \\ 33 & 18 & 10 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 8 & 8 & 7 \\ 9 & 7 & 3 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 9 & 0 & 8 \\ 6 & 8 & 1 \end{array} } \right]
2
Find the resulting matrix for cP + xY when c = 2 and x = 4
A LaTex expression showing P = \left[ {\begin{array} {c} 3 & 5 \end{array} } \right]\\Y = \left[ {\begin{array} {c} 6 & 0 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {c} 2 & 3 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {c} 1 & 4 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 2 & 2 \\ 4 & 4 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {c} 30 & 10 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {c} 9 & 0 \end{array} } \right]
3
A LaTex expression showing Z = \left[ {\begin{array} {} \end{array} } \right]\\C = \left[ {\begin{array} {} \end{array} } \right]
Find the resulting matrix for yZ + nC when y = 4 and n = 4
a A LaTex expression showing undefined
b A LaTex expression showing \left[ {\begin{array} {} \end{array} } \right]
4
Find the resulting matrix for bR + zY when b = 3 and z = 3
A LaTex expression showing R = \left[ {\begin{array} {c} 7 & 5 & 3 \end{array} } \right]\\Y = \left[ {\begin{array} {c} 3 & 0 & 2 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {c} 30 & 15 & 15 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {c} 1 & 6 & 9 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {c} 8 & 6 & 6 \end{array} } \right]
d A LaTex expression showing undefined
e A LaTex expression showing \left[ {\begin{array} {cc} 3 & 3 \\ 3 & 3 \end{array} } \right]
5
Find the resulting matrix for dP + rC when d = 2 and r = 3
A LaTex expression showing P = \left[ {\begin{array} {c} 6 & 2 & 6 \end{array} } \right]\\C = \left[ {\begin{array} {c} 9 & 0 & 9 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {c} 39 & 4 & 39 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} 2 & 2 \\ 3 & 3 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {c} 9 & 7 & 2 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {c} 4 & 6 & 3 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 12 & 4 & 12 \\ 27 & 0 & 27 \end{array} } \right]
6
Find the resulting matrix for mC + xB when m = 4 and x = 4
A LaTex expression showing C = \left[ {\begin{array} {c} 9 & 0 & 8 \end{array} } \right]\\B = \left[ {\begin{array} {c} 1 & 6 & 0 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 4 & 4 \\ 4 & 4 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {c} 1 & 1 & 1 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {c} 40 & 24 & 32 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {c} 9 & 3 & 1 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {c} 4 & 5 & 3 \end{array} } \right]
7
Find the resulting matrix for dR + zB when d = 2 and z = 4
A LaTex expression showing R = \left[ {\begin{array} {cc} 3 & 7 \\ 2 & 2 \end{array} } \right]\\B = \left[ {\begin{array} {cc} 6 & 2 \\ 8 & 8 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 30 & 22 \\ 36 & 36 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} 5 & 7 \\ 8 & 6 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 6 & 14 & 24 & 8 \\ 4 & 4 & 32 & 32 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 32 & 23 \\ 36 & 36 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 8 & 9 \\ 3 & 9 \end{array} } \right]