Add with Two Scalars (Level 1)

This math topic focuses on operations with matrices, emphasizing the addition of two matrices after each has been multiplied by a scalar. It provides practice on calculating the resultant matrix from such operations, with various problems structured to apply specific integer scalar values to two matrices and summing the results. Additionally, it includes multiple-choice answers, allowing for practice in selecting the correct resultant matrix from a list of possibilities while reinforcing understanding of matrix addition and scalar multiplication.

Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

more
View

Matrices - Add with Two Scalars Worksheet

Mobius Math Academy logo
Matrices - Add with Two Scalars
1
Find the resulting matrix for yD + nZ when y = 2 and n = 4
A LaTex expression showing D = \left[ {\begin{array} {cc} 0 & 2 \\ 5 & 6 \end{array} } \right]\\Z = \left[ {\begin{array} {cc} 2 & 7 \\ 0 & 1 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 9 & 7 \\ 8 & 6 \end{array} } \right]
b A LaTex expression showing undefined
c A LaTex expression showing \left[ {\begin{array} {cc} 2 & 1 \\ 0 & 7 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 8 & 32 \\ 10 & 16 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cccc} 0 & 4 \\ 10 & 12 \\ 8 & 28 \\ 0 & 4 \end{array} } \right]
2
Find the resulting matrix for bZ + yX when b = 3 and y = 2
A LaTex expression showing Z = \left[ {\begin{array} {cc} 8 & 0 & 4 \\ 7 & 4 & 0 \end{array} } \right]\\X = \left[ {\begin{array} {cc} 0 & 7 & 5 \\ 6 & 3 & 5 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 9 & 0 & 8 \\ 6 & 8 & 1 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} 27 & 14 & 23 \\ 33 & 16 & 10 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 24 & 14 & 22 \\ 33 & 18 & 10 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 8 & 8 & 7 \\ 9 & 7 & 3 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cccc} 24 & 0 & 12 \\ 21 & 12 & 0 \\ 0 & 14 & 10 \\ 12 & 6 & 10 \end{array} } \right]
3
Find the resulting matrix for cR + dY when c = 2 and d = 2
A LaTex expression showing R = \left[ {\begin{array} {} \end{array} } \right]\\Y = \left[ {\begin{array} {} \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {} \end{array} } \right]
b A LaTex expression showing undefined
c A LaTex expression showing \left[ {\begin{array} {cc} 2 & 2 \\ 2 & 2 \end{array} } \right]
4
Find the resulting matrix for xD + nP when x = 4 and n = 3
A LaTex expression showing D = \left[ {\begin{array} {cc} 6 \\ 3 \end{array} } \right] \;\; P = \left[ {\begin{array} {cc} 9 \\ 2 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cccc} 24 \\ 12 \\ 27 \\ 6 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} 51 \\ 15 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 3 \\ 7 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 51 \\ 18 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 6 \\ 3 \end{array} } \right]
5
Find the resulting matrix for bR + zY when b = 3 and z = 3
A LaTex expression showing R = \left[ {\begin{array} {c} 7 & 5 & 3 \end{array} } \right]\\Y = \left[ {\begin{array} {c} 3 & 0 & 2 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {c} 8 & 6 & 6 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {c} 1 & 6 & 9 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {c} 30 & 15 & 15 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 3 & 3 \\ 3 & 3 \end{array} } \right]
e A LaTex expression showing undefined
6
Find the resulting matrix for zB + xY when z = 2 and x = 3
A LaTex expression showing B = \left[ {\begin{array} {ccc} 3 \\ 5 \\ 5 \end{array} } \right] \;\; Y = \left[ {\begin{array} {ccc} 7 \\ 8 \\ 3 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 27 \\ 34 \\ 19 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 8 \\ 5 \\ 2 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 2 & 2 \\ 3 & 3 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} 27 \\ 34 \\ 18 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 26 \\ 34 \\ 19 \end{array} } \right]
7
Find the resulting matrix for pZ + nM when p = 2 and n = 3
A LaTex expression showing Z = \left[ {\begin{array} {ccc} 9 & 9 \\ 5 & 5 \\ 4 & 1 \end{array} } \right] \;\; M = \left[ {\begin{array} {ccc} 4 & 8 \\ 9 & 6 \\ 3 & 4 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 30 & 42 \\ 37 & 28 \\ 17 & 14 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 4 & 2 \\ 3 & 8 \\ 8 & 2 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} 30 & 42 \\ 37 & 28 \\ 20 & 14 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} 7 & 5 \\ 1 & 2 \\ 4 & 5 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 2 & 2 \\ 3 & 3 \end{array} } \right]
8
Find the resulting matrix for nX + cY when n = 3 and c = 4
A LaTex expression showing X = \left[ {\begin{array} {cc} 3 \\ 9 \end{array} } \right] \;\; Y = \left[ {\begin{array} {cc} 9 \\ 8 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 45 \\ 62 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} 47 \\ 59 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 3 & 3 \\ 4 & 4 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 45 \\ 59 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cccc} 9 \\ 27 \\ 36 \\ 32 \end{array} } \right]