Find Inverse (2x2) (Level 1)

This math topic focuses on finding the inverse of 2x2 matrices. Students are provided with various 2x2 matrices and are asked to determine their inverses if they exist. The problems typically present a matrix and offer multiple possible answers, requiring the student to select the correct inverse from the options. This topic helps enhance skills in matrix algebra, specifically in the operation of finding matrix inverses, a fundamental concept in linear algebra.

Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

more
View

Find Inverse (2x2)

Complete these online problems with 80% or 4 correct answers in a row. Results are immediate.


Find the inverse of this matrix if it has one

[3041]\left[ {\begin{array} {cc} 3 & 0 \\ 4 & 1 \end{array} } \right]

?

Matrices - Find Inverse (2x2) Worksheet

Mobius Math Club logo
Math worksheet on 'Matrices - Find Inverse (2x2) (Level 1)'. Part of a broader unit on 'Matrices' Learn online: app.mobius.academy/math/units/matrices/
1
Find the inverse of this matrix if it has one
A LaTex expression showing \left[ {\begin{array} {cc} 3 & 0 \\ 2 & 1 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 0.38 & 0 \\ 0.25 & 0.12 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} -0.18 & 0 \\ -0.12 & -0.06 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 7 & 2 \\ 1 & 3 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 0.13 & 0 \\ 0.09 & 0.04 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 1 & 0 \\ 0.67 & 0.33 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {cc} -0.25 & 0 \\ -0.17 & -0.08 \end{array} } \right]
2
Find the inverse of this matrix if it has one
A LaTex expression showing \left[ {\begin{array} {cc} 2 & 3 \\ 4 & 2 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 7 & 4 \\ 0 & 2 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} -0.25 & -0.38 \\ -0.5 & -0.25 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 0 & 1 \\ 6 & 0 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} -16 & -24 \\ -32 & -16 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 0 & 0 \\ 0 & 0 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {cc} -0.06 & -0.09 \\ -0.12 & -0.06 \end{array} } \right]
3
Find the inverse of this matrix if it has one
A LaTex expression showing \left[ {\begin{array} {cc} 0 & 4 \\ 0 & 0 \end{array} } \right]
a A LaTex expression showing undefined
b A LaTex expression showing \left[ {\begin{array} {cc} 0 & 0.5 \\ 0 & 0 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 0 & 0.2 \\ 0 & 0 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 0 & 16 \\ 0 & 0 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 0 & 0.19 \\ 0 & 0 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {cc} 6 & 9 \\ 3 & 8 \end{array} } \right]
4
Find the inverse of this matrix if it has one
A LaTex expression showing \left[ {\begin{array} {cc} 1 & 1 \\ 4 & 0 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} -0.25 & -0.25 \\ -1 & 0 \end{array} } \right]
b A LaTex expression showing undefined
c A LaTex expression showing \left[ {\begin{array} {cc} -0.19 & -0.19 \\ -0.75 & 0 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 0.09 & 0.09 \\ 0.36 & 0 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 7 & 6 \\ 3 & 3 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {cc} 1 & 1 \\ 4 & 0 \end{array} } \right]
5
Find the inverse of this matrix if it has one
A LaTex expression showing \left[ {\begin{array} {cc} 0 & 0 \\ 0 & 4 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 6 & 4 \\ 9 & 8 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} NaN & NaN \\ NaN & ∞ \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 0 & 0 \\ 0 & -0.8 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 0 & 0 \\ 0 & 0.4 \end{array} } \right]
e A LaTex expression showing undefined
f A LaTex expression showing \left[ {\begin{array} {cc} 0 & 0 \\ 0 & 1 \end{array} } \right]
6
Find the inverse of this matrix if it has one
A LaTex expression showing \left[ {\begin{array} {cc} 3 & 4 \\ 4 & 2 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} -0.1 & -0.13 \\ -0.13 & -0.07 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} -0.3 & -0.4 \\ -0.4 & -0.2 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} -0.6 & -0.8 \\ -0.8 & -0.4 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} -0.12 & -0.16 \\ -0.16 & -0.08 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 0.08 & 0.1 \\ 0.1 & 0.05 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {cc} -0.3 & -0.4 \\ -0.4 & 1.8 \end{array} } \right]
7
Find the inverse of this matrix if it has one
A LaTex expression showing \left[ {\begin{array} {cc} 2 & 0 \\ 3 & 4 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 0.11 & 0 \\ 0.17 & 0.22 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} -0.19 & 0 \\ -0.28 & -0.38 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 0.38 & 0 \\ 0.56 & 0.75 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 0.07 & 0 \\ 0.11 & 0.14 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 2.25 & 0 \\ 0.38 & 0.5 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {cc} 0.25 & 0 \\ 0.38 & 0.5 \end{array} } \right]