Find Inverse (3x3) (Level 1)

This math topic focuses on finding the inverse of 3x3 matrices. Each question presents a different 3x3 matrix, and students need to determine its inverse if it exists. The content requires understanding matrix algebra, specifically the processes involved in computing the inverse of a matrix. The problems help in strengthening skills in manipulating matrices, which is fundamental in various branches of mathematics and applied sciences. Additionally, possible answers are provided in multiple-choice format, requiring students to work through the solutions and select the correct matrix inverse.

Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

more
View

Find Inverse (3x3)

Complete these online problems with 80% or 4 correct answers in a row. Results are immediate.


Find the inverse of this matrix if it has one

[431044414]\left[ {\begin{array} {ccc} 4 & 3 & 1 \\ 0 & 4 & 4 \\ 4 & 1 & 4 \end{array} } \right]

?

Matrices - Find Inverse (3x3) Worksheet

Mobius Math Club logo
Math worksheet on 'Matrices - Find Inverse (3x3) (Level 1)'. Part of a broader unit on 'Matrices' Learn online: app.mobius.academy/math/units/matrices/
1
Find the inverse of this matrix if it has one
A LaTex expression showing \left[ {\begin{array} {ccc} 3 & 1 & 3 \\ 4 & 3 & 0 \\ 2 & 4 & 2 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 0.15 & 0.25 & -0.22 \\ -0.2 & 0 & 0.3 \\ 0.25 & -0.25 & 0.12 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} 2 & 6 & 0 \\ 2 & 1 & 3 \\ 4 & 1 & 8 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} 0.15 & 0.25 & -0.22 \\ -0.2 & 0 & 0.3 \\ 0.25 & 1.75 & 0.12 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 120 & 40 & 120 \\ 160 & 120 & 0 \\ 80 & 160 & 80 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {ccc} -0.3 & -0.5 & 0.45 \\ 0.4 & 0 & -0.6 \\ -0.5 & 0.5 & -0.25 \end{array} } \right]
2
Find the inverse of this matrix if it has one
A LaTex expression showing \left[ {\begin{array} {ccc} 0 & 1 & 3 \\ 4 & 2 & 0 \\ 1 & 3 & 4 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 0 & 0.07 & 0.21 \\ 0.29 & 0.14 & 0 \\ 0.07 & 0.21 & 0.29 \end{array} } \right]
b A LaTex expression showing undefined
c A LaTex expression showing \left[ {\begin{array} {ccc} 0.57 & 0.36 & -0.43 \\ -1.14 & -3.21 & 0.86 \\ 3.71 & 0.07 & -0.29 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} 0.57 & 0.36 & -0.43 \\ -1.14 & -0.21 & 0.86 \\ 0.71 & 0.07 & -0.29 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 0.57 & -1.64 & -1.43 \\ -4.14 & -0.21 & 0.86 \\ 0.71 & 0.07 & -0.29 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {ccc} 0 & 0.03 & 0.1 \\ 0.14 & 0.07 & 0 \\ 0.03 & 0.1 & 0.14 \end{array} } \right]
3
Find the inverse of this matrix if it has one
A LaTex expression showing \left[ {\begin{array} {ccc} 3 & 1 & 4 \\ 2 & 3 & 2 \\ 3 & 4 & 3 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 1.5 & 19.5 & -15 \\ 0 & -4.5 & 3 \\ -1.5 & -13.5 & 10.5 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} -1 & -13 & 10 \\ 0 & 3 & -2 \\ 1 & 9 & -7 \end{array} } \right]
c A LaTex expression showing undefined
d A LaTex expression showing \left[ {\begin{array} {ccc} -1.5 & -19.5 & 15 \\ 0 & 4.5 & -3 \\ 1.5 & 13.5 & -10.5 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 0.75 & 0.25 & 1 \\ 0.5 & 0.75 & 0.5 \\ 0.75 & 1 & 0.75 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {ccc} 9 & 6 & 5 \\ 0 & 4 & 1 \\ 4 & 6 & 0 \end{array} } \right]
4
Find the inverse of this matrix if it has one
A LaTex expression showing \left[ {\begin{array} {ccc} 4 & 0 & 2 \\ 3 & 0 & 2 \\ 4 & 2 & 1 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 1 & -1 & 0 \\ -1.25 & 4 & 0.5 \\ -1.5 & 2 & 0 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} -1.75 & 1.75 & 0 \\ 2.19 & -1.75 & -0.88 \\ 2.62 & -3.5 & 0 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} 1.25 & -1.25 & 0 \\ -1.56 & 1.25 & 0.62 \\ -1.88 & 2.5 & 0 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} -0.21 & 0 & -0.11 \\ -0.16 & 0 & -0.11 \\ -0.21 & -0.11 & -0.05 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 2 & -2 & 0 \\ -2.5 & 2 & 1 \\ -3 & 4 & 0 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {ccc} 1 & -1 & 0 \\ -1.25 & 1 & 0.5 \\ -1.5 & 2 & 0 \end{array} } \right]
5
Find the inverse of this matrix if it has one
A LaTex expression showing \left[ {\begin{array} {ccc} 1 & 3 & 1 \\ 4 & 2 & 4 \\ 3 & 3 & 4 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 0.4 & 0.9 & -1 \\ 0.4 & -0.1 & 0 \\ -0.6 & -0.6 & 1 \end{array} } \right]
b A LaTex expression showing undefined
c A LaTex expression showing \left[ {\begin{array} {ccc} -0.03 & -0.1 & -0.03 \\ -0.13 & -0.07 & -0.13 \\ -0.1 & -0.1 & -0.13 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} -0.8 & -1.8 & 2 \\ -0.8 & 0.2 & 0 \\ 1.2 & 1.2 & -2 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 1.4 & -2.1 & -1 \\ 2.4 & -0.1 & 0 \\ -0.6 & -0.6 & 1 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {ccc} -0.1 & -0.3 & -0.1 \\ -0.4 & -0.2 & -0.4 \\ -0.3 & -0.3 & -0.4 \end{array} } \right]
6
Find the inverse of this matrix if it has one
A LaTex expression showing \left[ {\begin{array} {ccc} 2 & 1 & 1 \\ 0 & 1 & 3 \\ 2 & 2 & 0 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 1.31 & -0.44 & -0.44 \\ -1.31 & 0.44 & 1.31 \\ 0.44 & 0.44 & -0.44 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 1.75 & -0.25 & -0.25 \\ -1.75 & 0.25 & -0.25 \\ 0.25 & 3.25 & -0.25 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} 0.75 & -0.25 & -0.25 \\ -0.75 & 0.25 & 0.75 \\ 0.25 & 0.25 & -0.25 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} 7 & 7 & 1 \\ 8 & 3 & 4 \\ 6 & 9 & 0 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 1.75 & -0.25 & -0.25 \\ -0.75 & 0.25 & 0.75 \\ 0.25 & 0.25 & -2.25 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {ccc} -16 & -8 & -8 \\ 0 & -8 & -24 \\ -16 & -16 & 0 \end{array} } \right]
7
Find the inverse of this matrix if it has one
A LaTex expression showing \left[ {\begin{array} {ccc} 1 & 0 & 2 \\ 2 & 0 & 3 \\ 0 & 3 & 1 \end{array} } \right]
a A LaTex expression showing undefined
b A LaTex expression showing \left[ {\begin{array} {ccc} 0.12 & 0 & 0.25 \\ 0.25 & 0 & 0.38 \\ 0 & 0.38 & 0.12 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} -3 & 2 & 0 \\ -0.67 & 0.33 & 0.33 \\ 2 & -1 & 0 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} -0.14 & 0 & -0.29 \\ -0.29 & 0 & -0.43 \\ 0 & -0.43 & -0.14 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} -3 & 3 & 0 \\ -0.67 & 0.33 & 0.33 \\ 2 & -1 & 0 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {ccc} 3 & 0 & 6 \\ 6 & 0 & 9 \\ 0 & 9 & 3 \end{array} } \right]