Find Inverse from Simplified Augmented Matrix (3x3) (Level 1)

This math topic focuses on finding the inverse of 3x3 matrices from simplified augmented matrices. The problems require performing row operations to isolate and identify the inverse of the matrix presented. The questions are detailed with potentially multiple-choice answers, providing images of the matrices and their inverses for clearer visualization. The skill primarily practiced here is the manipulation of matrices and understanding of linear transformations in algebra.

Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

more
View

Find Inverse from Simplified Augmented Matrix (3x3)

Complete these online problems with 80% or 4 correct answers in a row. Results are immediate.


Find the inverse of this augmented matrix by doing the required row operations

[400100020010881001]\left[ {\begin{array} {cccc} 4 & 0 & 0 & \vert & 1 & 0 & 0 \\ 0 & 2 & 0 & \vert & 0 & 1 & 0 \\ -8 & -8 & 1 & \vert & 0 & 0 & 1 \end{array} } \right]

?

Matrices - Find Inverse from Simplified Augmented Matrix (3x3) Worksheet

Mobius Math Club logo
Math worksheet on 'Matrices - Find Inverse from Simplified Augmented Matrix (3x3) (Level 1)'. Part of a broader unit on 'Matrices' Learn online: app.mobius.academy/math/units/matrices/
1
Find the inverse of this augmented matrix by doing the required row operations
A LaTex expression showing \left[ {\begin{array} {cccc} -4 & 0 & 0 & \vert & 1 & 0 & 0 \\ 0 & 0.5 & 0 & \vert & 0 & 1 & 0 \\ 0 & 0 & -0.5 & \vert & 0 & 0 & 1 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 0.38 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 3 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} -0.25 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{array} } \right]
c A LaTex expression showing undefined
d A LaTex expression showing \left[ {\begin{array} {ccc} 0.21 & 0 & 0 \\ 0 & -0.03 & 0 \\ 0 & 0 & 0.03 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 0.25 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {ccc} -0.5 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -4 \end{array} } \right]
2
Find the inverse of this augmented matrix by doing the required row operations
A LaTex expression showing \left[ {\begin{array} {cccc} 1 & 0 & 0 & \vert & 1 & 0 & 0 \\ 0 & 0 & 4 & \vert & 0 & 1 & 0 \\ 0 & 4 & 0 & \vert & 0 & 0 & 1 \end{array} } \right]
a A LaTex expression showing undefined
b A LaTex expression showing \left[ {\begin{array} {ccc} 2 & 0 & 0 \\ 0 & 0 & 0.5 \\ 0 & 0.5 & 0 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} -1.25 & 0 & 0 \\ 0 & 0 & -0.31 \\ 0 & -0.31 & 0 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} -0.5 & 0 & 0 \\ 0 & 0 & -0.12 \\ 0 & -0.12 & 0 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 1 & 0 & 0 \\ 0 & 0 & 0.25 \\ 0 & 0.25 & 0 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {ccc} -1 & 0 & 0 \\ 0 & 0 & -4 \\ 0 & -4 & 0 \end{array} } \right]
3
Find the inverse of this augmented matrix by doing the required row operations
A LaTex expression showing \left[ {\begin{array} {cccc} 0 & -2 & 0 & \vert & 1 & 0 & 0 \\ -3 & 0 & 0 & \vert & 0 & 1 & 0 \\ 0 & 0 & 1 & \vert & 0 & 0 & 1 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 0 & -0.33 & 0 \\ -0.5 & 0 & -1 \\ 0 & 1 & 1 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 0 & 12 & 0 \\ 18 & 0 & 0 \\ 0 & 0 & -6 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} 0 & 2 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & -1 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} 0 & 0.18 & 0 \\ 0.27 & 0 & 0 \\ 0 & 0 & -0.09 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 0 & -0.33 & 0 \\ -0.5 & 0 & 0 \\ 0 & 0 & 1 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {ccc} 0 & -0.25 & 0 \\ -0.38 & 0 & 0 \\ 0 & 0 & 0.75 \end{array} } \right]
4
Find the inverse of this augmented matrix by doing the required row operations
A LaTex expression showing \left[ {\begin{array} {cccc} 3 & 0 & 0 & \vert & 1 & 0 & 0 \\ 0 & 1 & 0 & \vert & 0 & 1 & 0 \\ 6 & 0 & 1 & \vert & 0 & 0 & 1 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 0.17 & 0 & 0 \\ 0 & 0.5 & 0 \\ -1 & 0 & 0.5 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 2 & 4 & 2 \\ 3 & 9 & 6 \\ 2 & 8 & 3 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} -1.5 & 0 & 0 \\ 0 & -0.5 & 0 \\ -3 & 0 & -0.5 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} -0.5 & 0 & 0 \\ 0 & -1.5 & 0 \\ 3 & 0 & -1.5 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} -0.08 & 0 & 0 \\ 0 & -0.25 & 0 \\ 0.5 & 0 & -0.25 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {ccc} 0.33 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{array} } \right]
5
Find the inverse of this augmented matrix by doing the required row operations
A LaTex expression showing \left[ {\begin{array} {cccc} 0 & -3 & 0 & \vert & 1 & 0 & 0 \\ 3 & 0 & 0 & \vert & 0 & 1 & 0 \\ 0 & 0 & 1 & \vert & 0 & 0 & 1 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 0 & -27 & 0 \\ 27 & 0 & 0 \\ 0 & 0 & 9 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 0 & 0.33 & 0 \\ -0.33 & 0 & 0 \\ 0 & 0 & 1 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} 0 & -0.1 & 0 \\ 0.1 & 0 & 0 \\ 0 & 0 & 0.03 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} 0 & -0.21 & 0 \\ 0.21 & 0 & 0 \\ 0 & 0 & 0.07 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 2 & 9 & 9 \\ 5 & 0 & 4 \\ 4 & 0 & 5 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {ccc} 0 & -0.17 & 0 \\ 0.17 & 0 & 0 \\ 0 & 0 & -0.5 \end{array} } \right]
6
Find the inverse of this augmented matrix by doing the required row operations
A LaTex expression showing \left[ {\begin{array} {cccc} 1 & 8 & 0 & \vert & 1 & 0 & 0 \\ 0 & 4 & 0 & \vert & 0 & 1 & 0 \\ 0 & 0 & 1 & \vert & 0 & 0 & 1 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 4 & 32 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 4 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} -0.06 & -0.5 & 0 \\ 0 & -0.25 & 0 \\ 0 & 0 & -0.06 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} 0.05 & 0.42 & 0 \\ 0 & 0.21 & 0 \\ 0 & 0 & 0.05 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} 1.25 & -2.5 & 0 \\ 0 & 0.31 & 0 \\ 0 & 0 & 1.25 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 1 & -2 & 0 \\ 0 & 0.25 & 0 \\ 0 & 0 & 1 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {ccc} 0.11 & 0.89 & 0 \\ 0 & 0.44 & 0 \\ 0 & 0 & 0.11 \end{array} } \right]
7
Find the inverse of this augmented matrix by doing the required row operations
A LaTex expression showing \left[ {\begin{array} {cccc} 2 & 0 & 0 & \vert & 1 & 0 & 0 \\ 0 & 2 & 0 & \vert & 0 & 1 & 0 \\ 6 & 6 & 1 & \vert & 0 & 0 & 1 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 24 & 24 & 4 \end{array} } \right]
b A LaTex expression showing undefined
c A LaTex expression showing \left[ {\begin{array} {ccc} -0.25 & 0 & 0 \\ 0 & -0.25 & 0 \\ 1.5 & 1.5 & -0.5 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} -0.38 & 0 & 0 \\ 0 & -0.38 & 0 \\ 2.25 & 2.25 & -0.75 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 0.5 & 0 & 0 \\ 0 & 0.5 & 0 \\ -3 & -3 & 1 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {ccc} 0.14 & 0 & 0 \\ 0 & 0.14 & 0 \\ 0.43 & 0.43 & 0.07 \end{array} } \right]