Subtract with One Scalar (Level 1)

This math topic focuses on operations with matrices, specifically the subtraction of one matrix from another after modifying one or both matrices by scalar multiplication. The problems involve determining the result of expressions like rZ - N, cM - X, X - mY, B - zR, cM - N, and dR - X, where letters represent matrices and the lowercase letters (r, c, m, z, d) are scalars by which matrices are multiplied before subtraction is carried out. Each problem provides matrices and scalar values and asks for the resulting matrix after performing the described operations.

Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

more
View

Subtract with One Scalar

Complete these online problems with 80% or 4 correct answers in a row. Results are immediate.


Find the resulting matrix for Y - xB when x = 4

Y=[5150]B=[7852]Y = \left[ {\begin{array} {cc} 5 & 1 \\ 5 & 0 \end{array} } \right]\\B = \left[ {\begin{array} {cc} 7 & 8 \\ 5 & 2 \end{array} } \right]

?

Matrices - Subtract with One Scalar Worksheet

Mobius Math Club logo
Math worksheet on 'Matrices - Subtract with One Scalar (Level 1)'. Part of a broader unit on 'Matrices' Learn online: app.mobius.academy/math/units/matrices/
1
Find the resulting matrix for X - bM when b = 2
A LaTex expression showing X = \left[ {\begin{array} {ccc} 2 & 5 & 6 \\ 4 & 2 & 2 \\ 3 & 7 & 3 \end{array} } \right]\\M = \left[ {\begin{array} {ccc} 2 & 3 & 2 \\ 2 & 2 & 6 \\ 6 & 2 & 2 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 1 & 1 \\ 2 & 2 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 2 & 2 & 7 \\ 4 & 1 & 3 \\ 4 & 8 & 5 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} -2 & -1 & 2 \\ 0 & -2 & -10 \\ -9 & 0 & -1 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} -2 & -1 & 2 \\ 0 & -2 & -10 \\ -9 & 3 & -1 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 2 & 5 & 6 & -4 & -6 & -4 \\ 4 & 2 & 2 & -4 & -4 & -12 \\ 3 & 7 & 3 & -12 & -4 & -4 \end{array} } \right]
2
A LaTex expression showing M = \left[ {\begin{array} {} \end{array} } \right]\\R = \left[ {\begin{array} {} \end{array} } \right]
Find the resulting matrix for zM - R when z = 4
a A LaTex expression showing undefined
b A LaTex expression showing \left[ {\begin{array} {} \end{array} } \right]
3
Find the resulting matrix for dR - X when d = 2
A LaTex expression showing R = \left[ {\begin{array} {c} 2 & 7 & 9 \end{array} } \right]\\X = \left[ {\begin{array} {c} 3 & 8 & 7 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {c} 7 & 8 & 2 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {c} 1 & 6 & 11 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {c} 1 & 1 & 2 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 4 & 14 & 18 \\ -3 & -8 & -7 \end{array} } \right]
4
Find the resulting matrix for X - rB when r = 2
A LaTex expression showing X = \left[ {\begin{array} {} \end{array} } \right]\\B = \left[ {\begin{array} {} \end{array} } \right]
a A LaTex expression showing undefined
b A LaTex expression showing \left[ {\begin{array} {cc} 1 & 1 \\ 2 & 2 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {} \end{array} } \right]
5
Find the resulting matrix for yZ - C when y = 2
A LaTex expression showing Z = \left[ {\begin{array} {} \end{array} } \right]\\C = \left[ {\begin{array} {} \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {} \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} 2 & 2 \\ 1 & 1 \end{array} } \right]
c A LaTex expression showing undefined
6
Find the resulting matrix for M - cR when c = 4
A LaTex expression showing M = \left[ {\begin{array} {ccc} 5 & 7 & 4 \\ 9 & 3 & 1 \\ 2 & 7 & 5 \end{array} } \right]\\R = \left[ {\begin{array} {ccc} 1 & 5 & 8 \\ 3 & 2 & 6 \\ 1 & 2 & 9 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 1 & -13 & -28 \\ -1 & -5 & -23 \\ -2 & -2 & -31 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 1 & -13 & -28 \\ -3 & -5 & -23 \\ -2 & -1 & -31 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} 5 & 8 & 6 \\ 0 & 9 & 9 \\ 2 & 9 & 4 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cccccc} 5 & 7 & 4 \\ 9 & 3 & 1 \\ 2 & 7 & 5 \\ -4 & -20 & -32 \\ -12 & -8 & -24 \\ -4 & -8 & -36 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 4 & 9 & 5 \\ 3 & 3 & 3 \\ 4 & 9 & 3 \end{array} } \right]
7
Find the resulting matrix for Y - rN when r = 4
A LaTex expression showing Y = \left[ {\begin{array} {c} 6 & 3 \end{array} } \right]\\N = \left[ {\begin{array} {c} 0 & 3 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {c} 7 & 7 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {c} 6 & 1 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {c} 6 & -9 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {c} 1 & 3 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {c} 0 & 6 \end{array} } \right]