Subtract with Two Scalars (Level 1)

This math topic focuses on subtracting matrices with two scalar operations. Questions involve defining scalar values and performing resultant matrix operations such as multiplying matrices by these scalars followed by subtracting one from the other. Answers are presented in multiple-choice format, allowing for selection from various options. These problems aim to enhance understanding of basic matrix operations combined with scalar multiplication and subtraction, skills fundamental in linear algebra.

Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

more
View

Subtract with Two Scalars

Complete these online problems with 80% or 4 correct answers in a row. Results are immediate.


Find the resulting matrix for rM - cY when r = 3 and c = 2

M=[963410]Y=[505017]M = \left[ {\begin{array} {cc} 9 & 6 & 3 \\ 4 & 1 & 0 \end{array} } \right]\\Y = \left[ {\begin{array} {cc} 5 & 0 & 5 \\ 0 & 1 & 7 \end{array} } \right]

?

Matrices - Subtract with Two Scalars Worksheet

Mobius Math Club logo
Math worksheet on 'Matrices - Subtract with Two Scalars (Level 1)'. Part of a broader unit on 'Matrices' Learn online: app.mobius.academy/math/units/matrices/
1
Find the resulting matrix for yR - mN when y = 3 and m = 4
A LaTex expression showing R = \left[ {\begin{array} {} \end{array} } \right]\\N = \left[ {\begin{array} {} \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {} \end{array} } \right]
b A LaTex expression showing undefined
c A LaTex expression showing \left[ {\begin{array} {cc} 3 & 3 \\ 4 & 4 \end{array} } \right]
2
Find the resulting matrix for dB - mP when d = 4 and m = 3
A LaTex expression showing B = \left[ {\begin{array} {cc} 0 \\ 4 \end{array} } \right] \;\; P = \left[ {\begin{array} {cc} 7 \\ 5 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 7 \\ 8 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} -19 \\ 1 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 4 \\ 8 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} -21 \\ 1 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 7 \\ 6 \end{array} } \right]
3
Find the resulting matrix for bC - yN when b = 4 and y = 2
A LaTex expression showing C = \left[ {\begin{array} {ccc} 0 & 4 \\ 1 & 9 \\ 1 & 7 \end{array} } \right] \;\; N = \left[ {\begin{array} {ccc} 4 & 8 \\ 2 & 0 \\ 9 & 9 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} -8 & 0 \\ 0 & 36 \\ -14 & 10 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 9 & 7 \\ 8 & 4 \\ 8 & 8 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} -9 & 0 \\ 0 & 36 \\ -14 & 10 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} 9 & 5 \\ 6 & 0 \\ 2 & 3 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cccccc} 0 & 16 \\ 4 & 36 \\ 4 & 28 \\ -8 & -16 \\ -4 & 0 \\ -18 & -18 \end{array} } \right]
4
Find the resulting matrix for nM - rB when n = 2 and r = 4
A LaTex expression showing M = \left[ {\begin{array} {ccc} 0 \\ 5 \\ 9 \end{array} } \right] \;\; B = \left[ {\begin{array} {ccc} 9 \\ 5 \\ 5 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 0 & -36 \\ 10 & -20 \\ 18 & -20 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 3 \\ 0 \\ 3 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} 2 \\ 4 \\ 3 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} -36 \\ -10 \\ -2 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 4 \\ 5 \\ 6 \end{array} } \right]
5
Find the resulting matrix for pC - dB when p = 2 and d = 2
A LaTex expression showing C = \left[ {\begin{array} {cc} 7 \\ 9 \end{array} } \right] \;\; B = \left[ {\begin{array} {cc} 3 \\ 8 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 8 \\ 2 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} 2 & 2 \\ 2 & 2 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 2 \\ 9 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 7 \\ 0 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cccc} 14 \\ 18 \\ -6 \\ -16 \end{array} } \right]
6
Find the resulting matrix for nC - mD when n = 2 and m = 3
A LaTex expression showing C = \left[ {\begin{array} {c} 2 & 8 & 1 \end{array} } \right]\\D = \left[ {\begin{array} {c} 4 & 8 & 1 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {c} -8 & -8 & -1 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {c} 9 & 7 & 2 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {c} 7 & 9 & 2 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {c} -8 & -8 & -3 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {c} -5 & -8 & -1 \end{array} } \right]
7
A LaTex expression showing P = \left[ {\begin{array} {ccc} 0 & 4 & 9 \\ 5 & 6 & 1 \\ 4 & 3 & 7 \end{array} } \right]\\D = \left[ {\begin{array} {ccc} 7 & 3 & 7 \\ 9 & 2 & 4 \\ 0 & 2 & 5 \end{array} } \right]
Find the resulting matrix for zP - bD when z = 3 and b = 2
a A LaTex expression showing \left[ {\begin{array} {cc} 3 & 3 \\ 2 & 2 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cccccc} 0 & 12 & 27 \\ 15 & 18 & 3 \\ 12 & 9 & 21 \\ -14 & -6 & -14 \\ -18 & -4 & -8 \\ 0 & -4 & -10 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} -14 & 6 & 13 \\ -3 & 14 & -5 \\ 12 & 5 & 11 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} 9 & 0 & 9 \\ 5 & 8 & 7 \\ 3 & 6 & 8 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 3 & 3 & 0 \\ 9 & 0 & 0 \\ 2 & 8 & 8 \end{array} } \right]