Subtract with Two Scalars (Level 1)

This math topic focuses on subtracting matrices with two scalar operations. Questions involve defining scalar values and performing resultant matrix operations such as multiplying matrices by these scalars followed by subtracting one from the other. Answers are presented in multiple-choice format, allowing for selection from various options. These problems aim to enhance understanding of basic matrix operations combined with scalar multiplication and subtraction, skills fundamental in linear algebra.

Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

more
View

Matrices - Subtract with Two Scalars Worksheet

Mobius Math Academy logo
Matrices - Subtract with Two Scalars
1
Find the resulting matrix for zY - cD when z = 2 and c = 4
A LaTex expression showing Y = \left[ {\begin{array} {ccc} 5 & 3 \\ 3 & 2 \\ 0 & 1 \end{array} } \right] \;\; D = \left[ {\begin{array} {ccc} 7 & 3 \\ 5 & 1 \\ 2 & 5 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} -18 & -8 \\ -14 & 0 \\ -8 & -21 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} -18 & -6 \\ -14 & 0 \\ -8 & -18 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} 0 & 8 \\ 3 & 1 \\ 0 & 0 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} 5 & 1 \\ 9 & 9 \\ 0 & 3 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 10 & 6 & -28 & -12 \\ 6 & 4 & -20 & -4 \\ 0 & 2 & -8 & -20 \end{array} } \right]
2
Find the resulting matrix for dP - yZ when d = 4 and y = 3
A LaTex expression showing P = \left[ {\begin{array} {ccc} 0 & 7 & 2 \\ 2 & 7 & 2 \\ 5 & 3 & 1 \end{array} } \right]\\Z = \left[ {\begin{array} {ccc} 2 & 6 & 7 \\ 8 & 6 & 0 \\ 4 & 7 & 2 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 6 & 4 & 8 \\ 7 & 9 & 0 \\ 4 & 5 & 6 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 6 & 0 & 2 \\ 4 & 3 & 0 \\ 3 & 0 & 3 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} -6 & 10 & -13 \\ -16 & 9 & 8 \\ 8 & -9 & -2 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} -6 & 10 & -13 \\ -16 & 10 & 8 \\ 8 & -9 & -2 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 5 & 4 & 5 \\ 3 & 1 & 4 \\ 2 & 6 & 3 \end{array} } \right]
3
Find the resulting matrix for nC - mD when n = 2 and m = 3
A LaTex expression showing C = \left[ {\begin{array} {c} 2 & 8 & 1 \end{array} } \right]\\D = \left[ {\begin{array} {c} 4 & 8 & 1 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {c} -8 & -8 & -3 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {c} -5 & -8 & -1 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {c} 9 & 7 & 2 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {c} 7 & 9 & 2 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {c} -8 & -8 & -1 \end{array} } \right]
4
A LaTex expression showing D = \left[ {\begin{array} {} \end{array} } \right]\\X = \left[ {\begin{array} {} \end{array} } \right]
Find the resulting matrix for cD - rX when c = 3 and r = 3
a A LaTex expression showing \left[ {\begin{array} {} \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} 3 & 3 \\ 3 & 3 \end{array} } \right]
5
Find the resulting matrix for pC - dB when p = 2 and d = 2
A LaTex expression showing C = \left[ {\begin{array} {cc} 7 \\ 9 \end{array} } \right] \;\; B = \left[ {\begin{array} {cc} 3 \\ 8 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 2 \\ 9 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cccc} 14 \\ 18 \\ -6 \\ -16 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 8 \\ 2 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 2 & 2 \\ 2 & 2 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 7 \\ 0 \end{array} } \right]
6
Find the resulting matrix for rX - cP when r = 2 and c = 3
A LaTex expression showing X = \left[ {\begin{array} {cc} 8 & 5 & 7 \\ 2 & 9 & 5 \end{array} } \right]\\P = \left[ {\begin{array} {cc} 8 & 6 & 9 \\ 1 & 4 & 6 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} -8 & -8 & -13 \\ 1 & 6 & -8 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} -8 & -8 & -12 \\ 1 & 6 & -8 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} -8 & -8 & -16 \\ 1 & 6 & -8 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 2 & 2 \\ 3 & 3 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 3 & 0 & 2 \\ 6 & 7 & 9 \end{array} } \right]
7
Find the resulting matrix for dR - bX when d = 2 and b = 4
A LaTex expression showing R = \left[ {\begin{array} {ccc} 4 \\ 4 \\ 7 \end{array} } \right] \;\; X = \left[ {\begin{array} {ccc} 8 \\ 4 \\ 9 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 6 \\ 4 \\ 8 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 8 & -32 \\ 8 & -16 \\ 14 & -36 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {ccc} 8 \\ 5 \\ 5 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} -24 \\ -8 \\ -22 \end{array} } \right]
8
A LaTex expression showing P = \left[ {\begin{array} {ccc} 0 & 4 & 9 \\ 5 & 6 & 1 \\ 4 & 3 & 7 \end{array} } \right]\\D = \left[ {\begin{array} {ccc} 7 & 3 & 7 \\ 9 & 2 & 4 \\ 0 & 2 & 5 \end{array} } \right]
Find the resulting matrix for zP - bD when z = 3 and b = 2
a A LaTex expression showing \left[ {\begin{array} {cc} 3 & 3 \\ 2 & 2 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 9 & 0 & 9 \\ 5 & 8 & 7 \\ 3 & 6 & 8 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cccccc} 0 & 12 & 27 \\ 15 & 18 & 3 \\ 12 & 9 & 21 \\ -14 & -6 & -14 \\ -18 & -4 & -8 \\ 0 & -4 & -10 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} -14 & 6 & 13 \\ -3 & 14 & -5 \\ 12 & 5 & 11 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 3 & 3 & 0 \\ 9 & 0 & 0 \\ 2 & 8 & 8 \end{array} } \right]