Multiply by Scalar (Level 1)

This math topic focuses on practicing matrix scalar multiplication, a fundamental algebraic operation in the broader unit on matrices. Students are provided with a series of matrices to which a scalar is applied. The tasks involve calculating the resulting matrices after the multiplication by the given scalar, testing students' ability to apply scalar multiplication to various matrix dimensions and configurations, and selecting correct outcomes from multiple choices, promoting critical thinking and accuracy in matrix operations.

Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

more
View

Matrices - Multiply by Scalar Worksheet

Mobius Math Academy logo
Math worksheet on 'Matrices - Multiply by Scalar (Level 1)'. Part of a broader unit on 'Matrices' Learn online: app.mobius.academy/math/units/matrices/
1
Find the resulting matrix for rC when r = 2
A LaTex expression showing C = \left[ {\begin{array} {c} 5 & 6 & 6 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {c} 0 & 1 & 0 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {c} 10 & 10 & 12 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {c} 9 & 6 & 7 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {c} 10 & 12 & 14 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {c} 10 & 12 & 12 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {c} 10 & 12 & 11 \end{array} } \right]
2
Find the resulting matrix for cB when c = 3
A LaTex expression showing B = \left[ {\begin{array} {cc} 5 & 1 & 7 \\ 2 & 6 & 0 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 15 & 3 & 21 \\ 6 & 18 & 0 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} 6 & 3 & 4 \\ 3 & 6 & 1 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 4 & 4 & 1 \\ 6 & 1 & 1 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 18 & 3 & 21 \\ 9 & 18 & 0 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 15 & 3 & 21 \\ 6 & 18 & 1 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {cc} 15 & 3 & 18 \\ 6 & 16 & 0 \end{array} } \right]
3
Find the resulting matrix for xC when x = 3
A LaTex expression showing C = \left[ {\begin{array} {cccc} 1 & 3 \\ 7 & 2 \\ 1 & 0 \\ 8 & 2 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cccc} 5 & 5 \\ 2 & 0 \\ 8 & 3 \\ 0 & 9 \end{array} } \right]
b A LaTex expression showing undefined
c A LaTex expression showing \left[ {\begin{array} {cccc} 1 & 1 \\ 2 & 3 \\ 4 & 5 \\ 9 & 8 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cccc} 1 & 1 \\ 8 & 9 \\ 4 & 9 \\ 5 & 6 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cccc} 4 & 8 \\ 4 & 6 \\ 9 & 7 \\ 3 & 4 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {cccc} 3 & 9 \\ 21 & 6 \\ 3 & 0 \\ 24 & 6 \end{array} } \right]
4
Find the resulting matrix for cR when c = 3
A LaTex expression showing R = \left[ {\begin{array} {cccc} 8 & 2 \\ 8 & 5 \\ 7 & 5 \\ 0 & 0 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cccc} 24 & 6 \\ 24 & 15 \\ 21 & 15 \\ 0 & 3 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cccc} 0 & 8 \\ 4 & 0 \\ 4 & 5 \\ 3 & 4 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cccc} 24 & 6 \\ 24 & 15 \\ 21 & 15 \\ 0 & 0 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cccc} 24 & 6 \\ 21 & 15 \\ 21 & 15 \\ 0 & -2 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cccc} 27 & 6 \\ 24 & 15 \\ 21 & 15 \\ 0 & 0 \end{array} } \right]
f A LaTex expression showing undefined
5
Find the resulting matrix for dN when d = 2
A LaTex expression showing N = \left[ {\begin{array} {c} 9 & 9 & 3 & 6 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {c} 5 & 2 & 6 & 1 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {c} 18 & 18 & 6 & 12 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {c} 7 & 7 & 3 & 7 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {c} 18 & 17 & 6 & 12 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {c} 9 & 2 & 5 & 6 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {c} 18 & 21 & 6 & 12 \end{array} } \right]
6
A LaTex expression showing C = \left[ {\begin{array} {cccc} 8 & 9 & 8 \\ 5 & 5 & 7 \\ 1 & 4 & 7 \\ 6 & 2 & 1 \end{array} } \right]
Find the resulting matrix for mC when m = 2
a A LaTex expression showing \left[ {\begin{array} {cccc} 5 & 9 & 2 \\ 1 & 9 & 4 \\ 6 & 2 & 9 \\ 2 & 6 & 0 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cccc} 16 & 18 & 16 \\ 7 & 10 & 14 \\ 2 & 8 & 14 \\ 12 & 4 & 2 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cccc} 5 & 2 & 1 \\ 2 & 6 & 4 \\ 4 & 5 & 0 \\ 7 & 5 & 4 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cccc} 5 & 2 & 7 \\ 1 & 1 & 9 \\ 4 & 7 & 1 \\ 2 & 1 & 2 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cccc} 17 & 18 & 16 \\ 10 & 10 & 16 \\ 2 & 8 & 12 \\ 12 & 4 & 2 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {cccc} 16 & 18 & 16 \\ 10 & 10 & 14 \\ 2 & 8 & 14 \\ 12 & 4 & 2 \end{array} } \right]
7
Find the resulting matrix for bR when b = 4
A LaTex expression showing R = \left[ {\begin{array} {c} 3 & 0 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {c} 4 & 6 \end{array} } \right]
b A LaTex expression showing undefined
c A LaTex expression showing \left[ {\begin{array} {c} 13 & 0 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {c} 12 & 0 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {c} 5 & 0 \end{array} } \right]
f A LaTex expression showing \left[ {\begin{array} {c} 4 & 2 \end{array} } \right]
Matrices - Multiply by Scalar (Level 1) - Mobius Math Academy