Subtract with One Scalar (Level 1)

This math topic focuses on operations with matrices, specifically the subtraction of one matrix from another after modifying one or both matrices by scalar multiplication. The problems involve determining the result of expressions like rZ - N, cM - X, X - mY, B - zR, cM - N, and dR - X, where letters represent matrices and the lowercase letters (r, c, m, z, d) are scalars by which matrices are multiplied before subtraction is carried out. Each problem provides matrices and scalar values and asks for the resulting matrix after performing the described operations.

Work on practice problems directly here, or download the printable pdf worksheet to practice offline.

more
View

Matrices - Subtract with One Scalar Worksheet

Mobius Math Academy logo
Math worksheet on 'Matrices - Subtract with One Scalar (Level 1)'. Part of a broader unit on 'Matrices' Learn online: app.mobius.academy/math/units/matrices/
1
Find the resulting matrix for nC - Y when n = 3
A LaTex expression showing C = \left[ {\begin{array} {} \end{array} } \right]\\Y = \left[ {\begin{array} {} \end{array} } \right]
a A LaTex expression showing undefined
b A LaTex expression showing \left[ {\begin{array} {} \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 3 & 3 \\ 1 & 1 \end{array} } \right]
2
Find the resulting matrix for yC - R when y = 2
A LaTex expression showing C = \left[ {\begin{array} {c} 3 \end{array} } \right]\\R = \left[ {\begin{array} {c} 8 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {c} 6 & -8 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {c} -2 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cc} 2 & 2 \\ 1 & 1 \end{array} } \right]
d A LaTex expression showing undefined
e A LaTex expression showing \left[ {\begin{array} {c} 8 \end{array} } \right]
3
Find the resulting matrix for mY - C when m = 4
A LaTex expression showing Y = \left[ {\begin{array} {cc} 2 & 0 \\ 7 & 2 \end{array} } \right]\\C = \left[ {\begin{array} {cc} 5 & 0 \\ 0 & 1 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 6 & 2 \\ 7 & 5 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {cc} 8 & 0 & -5 & 0 \\ 28 & 8 & 0 & -1 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cccc} 8 & 0 \\ 28 & 8 \\ -5 & 0 \\ 0 & -1 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {cc} 8 & 6 \\ 7 & 6 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {cc} 3 & 0 \\ 28 & 7 \end{array} } \right]
4
A LaTex expression showing M = \left[ {\begin{array} {} \end{array} } \right]\\R = \left[ {\begin{array} {} \end{array} } \right]
Find the resulting matrix for zM - R when z = 4
a A LaTex expression showing \left[ {\begin{array} {} \end{array} } \right]
b A LaTex expression showing undefined
5
Find the resulting matrix for M - cR when c = 4
A LaTex expression showing M = \left[ {\begin{array} {ccc} 5 & 7 & 4 \\ 9 & 3 & 1 \\ 2 & 7 & 5 \end{array} } \right]\\R = \left[ {\begin{array} {ccc} 1 & 5 & 8 \\ 3 & 2 & 6 \\ 1 & 2 & 9 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {ccc} 5 & 8 & 6 \\ 0 & 9 & 9 \\ 2 & 9 & 4 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {ccc} 1 & -13 & -28 \\ -1 & -5 & -23 \\ -2 & -2 & -31 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {cccccc} 5 & 7 & 4 \\ 9 & 3 & 1 \\ 2 & 7 & 5 \\ -4 & -20 & -32 \\ -12 & -8 & -24 \\ -4 & -8 & -36 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {ccc} 4 & 9 & 5 \\ 3 & 3 & 3 \\ 4 & 9 & 3 \end{array} } \right]
e A LaTex expression showing \left[ {\begin{array} {ccc} 1 & -13 & -28 \\ -3 & -5 & -23 \\ -2 & -1 & -31 \end{array} } \right]
6
Find the resulting matrix for yZ - C when y = 2
A LaTex expression showing Z = \left[ {\begin{array} {} \end{array} } \right]\\C = \left[ {\begin{array} {} \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {cc} 2 & 2 \\ 1 & 1 \end{array} } \right]
b A LaTex expression showing undefined
c A LaTex expression showing \left[ {\begin{array} {} \end{array} } \right]
7
Find the resulting matrix for X - mY when m = 2
A LaTex expression showing X = \left[ {\begin{array} {c} 4 & 9 \end{array} } \right]\\Y = \left[ {\begin{array} {c} 4 & 5 \end{array} } \right]
a A LaTex expression showing \left[ {\begin{array} {c} 0 & 4 \end{array} } \right]
b A LaTex expression showing \left[ {\begin{array} {c} 8 & 2 \end{array} } \right]
c A LaTex expression showing \left[ {\begin{array} {c} 2 & 4 \end{array} } \right]
d A LaTex expression showing \left[ {\begin{array} {c} -4 & -1 \end{array} } \right]
e A LaTex expression showing undefined