This topic focuses on applying the Pythagorean theorem to solve for unknown side lengths in right triangles, using decimal values. Students practice manipulating equations to isolate and approximate the value of one side, labeled as 'a' or 'b', when the squared values of the other sides are given. These exercises help in reinforcing the concepts of roots and squares, precision in calculations, and handling algebraic expressions to solve real-world geometry problems. This forms part of a foundational unit on Pythagoras' theorem.
Work on practice problems directly here, or download the printable pdf worksheet to practice offline.
Complete these online problems with 80% or 4 correct answers in a row. Results are immediate.
Approximate the value of 'a' in this equation
Math worksheet on 'Pythagorean Equation from Values - Length of Side (Decimal) (Level 1)'. Part of a broader unit on 'Pythagoras - Foundations' Learn online: app.mobius.academy/math/units/pythagoras_foundations/ |
Approximate the value of 'b' in this equation |
b = 4.6 |
b = 8.7 |
b = 10.8 |
b = 7.7 |
b = 16 |
b = 5.4 |
Approximate the value of 'a' in this equation |
a = 6.2 |
a = 9 |
a = 4.2 |
a = 3.6 |
a = 4.7 |
a = 5.2 |
Approximate the value of 'a' in this equation |
a = 6.8 |
a = 11 |
a = 5.3 |
a = 6.1 |
a = 9.8 |
a = 8.8 |
Approximate the value of 'a' in this equation |
a = 2.9 |
a = 11 |
a = 7.7 |
a = 6.9 |
a = 5.7 |
a = 28 |
Approximate the value of 'a' in this equation |
a = 5.1 |
a = 5.7 |
a = 7.4 |
a = 6.7 |
a = 4.7 |
a = 8 |
Approximate the value of 'a' in this equation |
a = 10 |
a = 5.4 |
a = 7.9 |
a = 5.7 |
a = 7.7 |
a = 4.6 |
Approximate the value of 'a' in this equation |
a = 3.6 |
a = 13 |
a = 42 |
a = 6.6 |
a = 2.2 |
a = 1.6 |