Geometry 2D
Grades 2-12
Geometry 3D
Grades 7-11
Circles
Grades 6-11
Pythagoras
Grades 7-11
Probability
Grades 5-12
Exponents
Grades 5-12
Fractions/Decimals
Grades 1-11
Factors/Primes
Grades 4-11
Speed/Distance/Time
Grades 6-12
Numbers
Grades 5-10
Statistics
Grades 5-12
Multiply/Divide
Grades 1-9
Percentages
Grades 6-10
Time
Grades 2-8
Scientific Notation
Grades 6-12
Rates/Ratios
Grades 5-10
Metric Units
Grades 6-12
Place Value
Grades 0-6
Addition and Subtraction
Grades 0-4
Numeracy
Grades 0-4
Radicals
Grades 8-12
Data/Graphing
Grades 1-8
Visual Patterning
Grades 1-6
Patterning
Grades 5-12
Slope/Linear Equations
Grades 8-12
Shapes and Angles
Grades 0-7
Algebra
Grades 6-12
Trigonometry
Grades 10-12
This math unit introduces and develops foundational algebra skills, advancing from simple to more complex concepts. Initially, students balance shapes using simple ratios, exploring basic equality principles and ratio application. They delve further into understanding algebra by interpreting the meaning of a dot as multiplication in algebraic functions and applying simple substitution in balancing more complex scenarios with three beams. Progressively, the unit tackles linear equations, first by solving two-term equations and advancing to three-term equations, enhancing student skills in basic arithmetic operations and variable isolation. Concurrently, students learn to interpret algebraic expressions, distinguishing between operations like multiplication, addition, and exponentiation, with focus on how numbers and variables interact in an equation. Towards the latter stages, the unit emphasizes on translating verbal descriptions into algebraic equations and practicing variable substitution in algebraic expressions, both unbracketed and bracketed. These exercises reinforce understanding of algebra's fundamental concepts, setting a robust basis for advanced topics.Skills you will learn include:
This math unit begins with the foundational concept of identifying y-intercepts from linear equations in slope-intercept and standard forms using integer coefficients. As the unit progresses, it introduces the concept of x-intercepts, requiring students to manipulate equations set to zero in either variable while still using integer values. The complexity increases as the unit shifts to equations involving decimal coefficients. This additional challenge tests the students' ability to work with more precise values and enhances their algebraic manipulation skills. Towards the end of the unit, the focus shifts to finding intersection points between different types of lines including horizontal, vertical, and other linear equations demonstrating both integer and decimal solutions. This progression from basic intercept identification to solving for intersections between various lines helps students understand the graphical behavior of linear equations and their points of intersection.Skills you will learn include:
This math unit progresses through various aspects of understanding and calculating the slope of a line, as well as deriving other line characteristics such as rise and run using the slope formula. Initially, the unit introduces the basic terms "rise" and "run" and the concept of slope by identifying these components on a graph. Students then learn to compute the slope using the rise over run formula expressed as an equation. Progressively, they apply this understanding to determine the rise and the run from known values of slope and one of the other variables. Through practice, the unit strengthens students' ability to manipulate and solve equations involving slope, rise, and run. Later, this evolves into more complex tasks where slope is calculated between specific points or derived from graphical representations, enhancing skills in interpreting and analyzing linear relationships by applying algebraic methods and critical thinking.Skills you will learn include:
This math unit begins by introducing students to the fundamental skills of substituting numbers and variables into linear equations. Initially, students practice simple substitutions where numbers are replaced in equations with one defined variable, advancing to solve for unknown variables using these substitutions. As the unit progresses, the complexity increases as students learn to apply the substitution method to systems of linear equations, where they must substitute entire equations to simplify and solve for variables. The unit deepens understanding by requiring students to manipulate and simplify algebraic expressions to isolate variables and solve equations. Multiple choice questions are included to help verify their solutions. Towards the end of the unit, the focus shifts to practical applications, employing algebraic manipulations in balance scales scenarios where substitution and subtraction are used to solve more visually presented equations, enhancing problem-solving skills in real-world contexts. Finally, the unit circles back to simpler algebraic operations such as addition within systems of equations, ensuring students consolidate their understanding of basic operations within the context of linear systems. This approach builds a robust foundation in algebra, preparing students for more complex mathematical concepts.Skills you will learn include:
This math unit begins by teaching students how to recognize and calculate the slope of linear equations presented in various forms. Starting with converting standard form equations to slope-intercept form and directly finding slopes, the unit progresses to applying these skills by interpreting graphed lines and determining their standard form equations. Increasing complexity is introduced as students learn to calculate negative reciprocal slopes to identify perpendicular lines, initially focusing on understanding the negative inverse property through converting integer and decimal slopes. The unit further delves into graphical interpretations, allowing students to visually analyze lines on graphs to identify perpendicular slopes and convert these observations into different numerical and algebraic representations. The advanced topics cover converting between different forms of slope equations and understanding the relationship between slopes of perpendicular lines within different forms of linear equations, emphasizing practical applications and manipulation of slope and perpendicularity in various contexts.Skills you will learn include:
In this math unit, students begin by expanding and simplifying algebraic expressions focusing on multiplying bracketed terms with the same variable, setting a foundational understanding of polynomial operations. They then progress to evaluating algebraic expressions through variable substitution, dealing initially with simple and negative terms, and advancing to more complex situations involving squared terms and negative coefficients. The practice intensifies as students substitute values into multiple fractional squared and bracketed squared terms, reinforcing their capacity to manage and compute expressions under specified conditions. Further advancing their algebraic skills, students practice solving basic linear equations to isolate variables, first with two terms and progressing to three terms, enhancing their handling of various algebraic functions. The unit culminates with advanced algebra concepts where students translate balanced shapes into equations, focusing on establishing and solving ratios, and involves visual and analytical skills by substituting and subtracting to find solutions in complex algebraic contexts. This flow from foundational polynomial operations to complex variable substitution and application in real-world contexts challenges students to deepen their understanding and proficiency in algebra.Skills you will learn include:
This math unit begins by teaching students how to multiply constants and single variables by bracketed terms, foundational for understanding polynomials and quadratics. It progresses to more complex skills such as multiplying different or same variables by bracketed terms, reinforcing the distributive property and FOIL method. As students advance, they encounter problems involving expanding and simplifying expressions of increasing complexity, including those with negative numbers. The unit culminates in advanced manipulations including identifying integer pairs that meet specific summative and multiplicative conditions and solving squared bracketed terms. Fundamentally, this unit furnishes students with a deep understanding of algebraic expressions crucial for tackling polynomials, quadratics, and advanced algebraic functions effectively.Skills you will learn include:
In this math unit, students progress through a sequence of topics that build foundational to advanced skills in algebra. The unit starts with basic skills such as expanding and simplifying algebraic expressions when multiplying a variable by a bracketed term, followed by solving linear equations with increasing complexity—from three to four terms. It then advances to manipulating algebraic fractions, where students solve and simplify equations that involve fractions with variables. The complexity in fraction manipulation progresses across orientations until students deal with comprehensive problems that require reducing fractions that involve variables to their simplest forms. Towards the end of the unit, the focus shifts to applying algebra in practical contexts using balance shapes. Students learn to analyze image-based problems and to use substitutions and subtraction to solve for the equations and answer visually represented through balance beams. This culminates in understanding complex ratios, substitutions, and algebraic manipulations through symbolic and visual interpretations, rounding out their algebraic skills with both numerical and real-world problem-solving abilities.Skills you will learn include:
This math unit primarily develops an understanding of slopes and their applications in determining parallelism between lines. It starts by teaching students how to graph linear equations from the slope-intercept form and progresses to converting these equations between different formats, reinforcing their understanding of slope as a critical element in linear equations. The central theme evolves around identifying parallel lines through various representations of slope, including fractional, decimal, and zero forms, along with graph interpretations. Students are guided through recognizing parallel slopes directly from graphs, as well as determining them through algebraic equation conversions involving both the slope-intercept form and graphical representations. Additionally, the unit enhances skills in manipulating and understanding equations, fostering an in-depth comprehension of how slopes establish relationships between parallel lines, crucial for graphing and algebraic problem solving in coordinate geometry. The progress from basic graph plotting and slope identification to detailed analysis of slopes in different forms and their corresponding graphical interpretations encapsulates the unit’s comprehensive approach to understanding linear relationships.Skills you will learn include:
In this math unit, students begin by learning to simplify algebraic functions involving the multiplication of a single variable with bracketed terms, setting a foundation for understanding polynomials and quadratics. Initially, they focus on mastering basic expansion of expressions where the variable is identical, such as y(y+3). The unit progresses to include more complexity by introducing expressions with different variables, enhancing understanding through exercises like \((z + 3)(m + 7)\). As learners advance through the unit, they tackle increasingly sophisticated problems that demand deeper conceptual understanding and manipulation skills. They move from multiplying simple binomials to handling expressions involving squared terms and the distribution of different variables across sums and differences within parentheses. Towards the end of the unit, students work on identifying and simplifying expressions to bracketed terms with different variables and coefficients and factoring quadratic equations. This progress from simple expansions to more complex operations prepares them for future studies in higher-level algebra, including the distinct skills of recognizing, manipulating, and simplifying polynomial and quadratic forms in various mathematical contexts.Skills you will learn include:
This math unit focuses on understanding and applying the concept of perpendicular slopes within different contexts of linear equations. It begins with basic calculations to find the negative reciprocal of given integer slopes and progresses to handling fractional and decimal slopes to identify perpendicular lines. The unit further develops by having learners convert and determine perpendicular slopes between different forms of linear equations, such as slope-intercept form, zero-intercept form, and standard form. Additionally, learners practice converting these equations for graphical representation, aiding in visual understanding and verification of perpendicular relationships. The depth of the unit increases as students move from initially identifying perpendicular slopes in simpler formats to manipulating complex algebraic forms and graphing them, thus building a comprehensive skill set in analyzing and constructing perpendicular lines within coordinate geometry. Throughout the unit, the primary emphasis remains on mastering the concept that the product of the slopes of perpendicular lines is -1, and applying this understanding in various mathematical scenarios.Skills you will learn include:
This math unit develops the understanding and skills related to slopes and equations of lines, with a specific focus on parallelism. Initially, students learn to recognize and convert line equations between different forms, starting from understanding simple forms such as slope-zero intercept and slope-intercept forms, to more complex transformations involving standard forms and decimal representations of slope. As the unit progresses, the emphasis shifts to applying these foundational skills to understand parallel lines. Students practice identifying parallel slopes by converting equations between various formats including zero-intercept, slope-y-intercept, fraction form, and graph representation to standard forms. Through these exercises, students enhance their ability to interpret and manipulate different algebraic expressions of linear equations, deepening their grasp of how slopes indicate parallelism and how lines can be graphically and algebraically analyzed and compared for this property.Skills you will learn include:
This math unit starts with foundational algebra concepts, encouraging students to develop algebraic thinking through balance problems and simple substitutions without explicitly introducing variables and equations. As the unit progresses, students move on to solving linear equations by isolating one variable and manipulating three-term equations using basic arithmetic operations including addition and subtraction. The unit further deepens comprehension of algebra by introducing variable substitution in simple algebraic expressions and balancing equations from visual cues. Later, students engage with the manipulation and evaluation of algebraic functions involving negative integers, fractions, and bracketed squared terms. The curriculum culminates in calculating exponents, solidifying an understanding of advanced algebraic operations. Throughout this progression, the focus shifts from intuitive problem-solving and basic operations to complex algebraic manipulations and computational skills in various algebraic contexts.Skills you will learn include:
This math unit opens with foundational algebraic concepts, beginning with solving basic linear equations with one variable. As the unit progresses, the focus shifts towards more complex operations involving algebraic fractions, where students first learn to solve and simplify equations with fractions and eventually handle advanced fraction manipulations, including those with multiple variables. The unit proceeds to expand into polynomial manipulation, targeting skills from expanding expressions with a single variable multiplied by bracketed terms to handling polynomials involving multiple variables. Students practice distributing variables across terms and simplifying the resulting expressions—a vital skill for more advanced studies in algebra. Towards the end of the unit, the emphasis is on multiplying bracketed terms—both with the same and different variables—to reinforce understanding of the distributive property and improve the ability to expand and manipulate polynomial expressions. The unit concludes with exercises that involve solving for integer pairs that meet specific conditions, synthesizing earlier concepts with integer properties and polynomial reasoning.Skills you will learn include:
This math unit starts with the fundamental skills of expanding algebraic expressions and applying the distributive property to simplify polynomial terms. Students initially practice multiplying a constant or variable with binomial expressions, moving towards identifying equivalent expressions with a focus on polynomials and quadratic functions. The complexity gradually increases as learners manipulate expressions involving same or different variables. Further along in the unit, students delve into more sophisticated tasks such as multiplying and removing variables from bracketed terms, including applications of the FOIL method and reinforcing the correct handling of signs when dealing with squared variables and constants. The unit transitions into quadratic equations, where students factor and simplify quadratic expressions, including those with coefficients, thus enhancing their algebraic manipulation skills. Towards the end of the unit, advanced concepts such as completing the square are introduced, focusing on transforming quadratic expressions into perfect square trinomials. This cements a deeper understanding of polynomials and quadratic equations, preparing students for more complex algebraic problems.Skills you will learn include:
This math unit begins with foundational practices in understanding and calculating the slope of a line through various methods and progressively moves towards applying these concepts to broader topics in linear equations and graphing. Initially, students explore the concept of slope using fact families and simple rise/run calculations from graphs. Progression occurs when students calculate the slope from specific points on a graph and ultimately advance to deriving slopes directly from rise and run values presented in equations. As the unit progresses, students take on tasks such as extrapolation of points from graphed lines based on linear equations and mathematical analysis to find specific points on a graph from given linear equations. The unit culminates with students identifying and manipulating linear equations based on slopes and intercepts from graphical representations and equations in standard form, enhancing their overall understanding of the relationship between algebraic expressions and their graphical manifestations in coordinate geometry.Skills you will learn include:
This math unit begins by developing foundational algebraic skills through the multiplication of bracketed terms with different variables, establishing an understanding of polynomial manipulations. It progresses to solving linear equations, starting with simpler forms involving one variable with three terms, and gradually increasing in complexity to equations with four terms. The unit then transitions to the manipulation of algebraic fractions, increasingly focusing on solving equations that contain variables within fractions and reinforcing the reduction of fractions to their simplest forms. The latter part of the unit introduces solving problems presented in a visual format with balance shapes, which require the use of substitution and subtraction to formulate and solve equations. This specialized focus aims to enhance understanding of how algebraic principles apply to practical and abstract mathematical problems, culminating in the ability to simplify complex algebraic expressions and solve advanced algebraic equations.Skills you will learn include:
This math unit covers a comprehensive range of skills in understanding and utilizing line equations and graphing. Initially, students begin by learning how to determine the slope of a line directly from a graph, setting the foundation for deeper exploration of linear relationships. They progress to calculating the rise (change in y-values) and run (change in x-values) between two points on a Cartesian plane, essential skills for understanding the slope of a line. The unit advances into more complex tasks that involve selecting the correct linear equation based on the slope, y-intercept, and visual information from graphs. Students practice how to analyze linear graphs and match them to their equations, ultimately enhancing their ability to interpret graphical data into algebraic expressions. This includes identifying lines that pass through the origin and understanding the impact of different slopes and y-intercepts. Towards the end of the unit, the focus shifts to applying these skills to solve for intercepts from equations presented in standard form and slope-intercept form. This progression solidifies students' understanding of linear equations, graph interpretation, and algebraic manipulation, ensuring comprehensive knowledge in constructing and analyzing line equations in various forms.Skills you will learn include: